

MINI REVIEW

Quantum dots in targeted bioimaging: A nanoscale approach to cellular diagnostics

Durgapada Sarkhel

Department of Biotechnology, Utkal University, Bhubaneswar, India

ABSTRACT

Quantum dots (QDs) have emerged as a transformative class of nanomaterials in the field of biomedical imaging, offering unique optical and physicochemical properties that enable high-resolution and multiplexed visualization of biological systems. This mini review explores the application of QDs in targeted bioimaging, emphasizing their role in advancing cellular diagnostics. Owing to their size-tunable fluorescence, broad excitation spectra, and exceptional photostability, QDs surpass traditional fluorescent dyes in both sensitivity and durability. Functionalization of QDs with targeting ligands such as antibodies, peptides, and aptamers allow for precise localization to specific cellular biomarkers, facilitating the identification and monitoring of pathological states at the molecular level.

We discuss various synthesis techniques and surface modification strategies that enhance the biocompatibility and specificity of QDs for in vitro and in vivo applications. Particular attention is given to their use in cancer diagnostics, where QDs have demonstrated superior imaging capabilities for early detection and real-time monitoring of tumor progression. Despite these advancements, challenges such as potential cytotoxicity, limited biodegradability, and regulatory concerns remain significant barriers to clinical translation.

The exploring innovative approaches designed to enhance both the safety and performance of quantum dots (QDs). These include the use of non-toxic core materials and the creation of hybrid nanostructures. By overcoming existing challenges, QDs have the potential to significantly advance targeted bioimaging and support the development of more precise diagnostic tools at the nanoscale in biomedical research.

KEYWORDS

Quantum dots (QDs); Targeted bioimaging; Nanoscale imaging; Cellular diagnostics; Fluorescent nanocrystals

ARTICLE HISTORY

Received 9 January 2025; Revised 31 January 2025; Accepted 10 February 2025

Introduction

Advancements in biomedical imaging have revolutionized disease diagnosis, therapeutic monitoring, and cellular research. Among the emerging technologies, targeted bioimaging stands out for its ability to visualize specific cellular and molecular processes with high precision. Traditional imaging agents, such as organic dyes and fluorescent proteins, often suffer from limitations including low photostability, broad emission spectra, and limited multiplexing capabilities. In this context, quantum dots (QDs)-semiconductor nanocrystals with unique optical and physicochemical properties-have garnered significant attention as next-generation imaging probes [1].

QDs exhibit exceptional fluorescence characteristics, including high brightness, size-tunable emission, broad absorption, and resistance to photobleaching. These properties make them particularly suitable for long-term and multiplexed imaging in complex biological environments [2]. Additionally, their surfaces can be functionalized with targeting ligands, such as antibodies, peptides, or aptamers, allowing for precise targeting of specific cell types or biomarkers.

This focuses on the role of quantum dots in targeted bioimaging and their growing relevance in cellular diagnostics. It highlights the key physicochemical features of QDs, explores synthesis and functionalization strategies, and examines their applications and limitations in biological imaging [3]. Ultimately, this review aims to provide insights into how QDs are paving the way for more sensitive, specific, and nanoscale diagnostic tools in biomedical science.

Quantum Dots: Properties and Synthesis

Quantum dots (QDs) are semiconductor nanocrystals typically ranging from 2 to 10 nanometers in diameter, exhibiting size-dependent optical and electronic properties due to quantum confinement effects [4]. These properties make QDs highly attractive for applications in biomedical imaging, particularly in targeted cellular diagnostics.

Optical and electronic properties

QDs possess distinct optical features, including broad absorption spectra and narrow, symmetric emission peaks that can be finely tuned across the visible to near-infrared (NIR) spectrum by simply adjusting their size or composition [5]. Smaller QDs emit light at shorter wavelengths (blue region), while larger QDs emit at longer wavelengths (red or NIR region). This tunable emission allows for multiplexed imaging,

where multiple QDs with different emission colors are excited simultaneously using a single light source [6]. Additionally, QDs demonstrate high fluorescence quantum yields, superior brightness, and excellent resistance to photobleaching compared to traditional organic dyes and fluorescent proteins, making them ideal for long-term imaging applications [7].

Structural composition

Typically, QDs are composed of a core/shell structure. Common core materials include cadmium selenide (CdSe), cadmium telluride (CdTe), and indium phosphide (InP), often coated with a shell material such as zinc sulfide (ZnS) to enhance stability and luminescence [8]. The shell acts as a passivation layer that reduces surface defects and prevents quenching of fluorescence.

Synthesis methods

Several synthesis methods have been developed to produce QDs with controlled size, shape, and surface properties:

- Colloidal synthesis: Colloidal synthesis is the most widely used method for producing QDs in solution at high yields. It involves the thermal decomposition of organometallic precursors in the presence of surfactants and solvents at high temperatures. This technique allows precise control over particle size and dispersity [9].
- Hydrothermal and solvothermal methods: These involve reactions in sealed autoclaves at elevated temperatures and pressures. They are more environmentally friendly and often used for synthesizing water-soluble or carbon-based QDs [10].
- Microwave-assisted synthesis: Microwave irradiation offers rapid and uniform heating, resulting in shorter reaction times and improved crystallinity. This method is gaining popularity for synthesizing carbon and graphene quantum dots [11].

Surface Modification

Post-synthesis, QDs often require surface modification to enhance solubility, stability, and biocompatibility. This is typically achieved through ligand exchange or encapsulation with amphiphilic polymers, silica, or polyethylene glycol (PEG), enabling conjugation with biomolecules for targeted delivery in bioimaging applications [12].

Functionalization and Targeting Strategies

The successful application of quantum dots (QDs) in targeted bioimaging hinges on their ability to selectively bind to specific biological targets. This is achieved through surface functionalization, a process that modifies the QD surface to improve biocompatibility, water solubility, and targeting specificity [13]. Functionalization enables the attachment of biological ligands such as antibodies, peptides, nucleic acids, or small molecules, which direct QDs to cellular receptors, proteins, or other biomarkers of interest [14].

Surface modification for biocompatibility

Native QDs synthesized using hydrophobic ligands are often insoluble in aqueous environments, limiting their use in biological systems. To overcome this, surface modification techniques are employed. Two primary approaches include:

- Ligand exchange: This method involves replacing the native hydrophobic ligands with hydrophilic ones such as thiol- or amine-containing molecules. While effective, it may sometimes reduce the stability or fluorescence quantum yield of QDs [15].
- Encapsulation: In this strategy, QDs are coated with amphiphilic polymers, silica shells, or phospholipid micelles that provide a stable and biocompatible interface. Encapsulation retains the original ligand layer and fluorescence, while enabling further functionalization [16].

Conjugation techniques

To target specific biological structures, QDs are conjugated with biomolecules that have an affinity for particular cellular markers. Common conjugation techniques include:

- Covalent coupling: Functional groups such as carboxyl, amine, or thiol on the QD surface react with complementary groups on targeting ligands using cross-linkers (e.g., EDC/NHS chemistry). This method ensures strong, stable binding of ligands [17].
- Biotin-streptavidin interaction: A widely used non-covalent method leveraging the high-affinity binding between biotinylated QDs and streptavidin-conjugated biomolecules.
- Click chemistry: A highly efficient and selective method that allows bio-orthogonal conjugation under mild conditions, minimizing interference with biological systems.

Targeting ligands

Various ligands can be conjugated to QDs for active targeting:

- Antibodies: Provide high specificity for cell surface receptors or antigens, commonly used in cancer imaging.
- Peptides and aptamers: Smaller than antibodies, they offer better tissue penetration and faster binding kinetics.
- Small molecules: Such as folic acid, used to target receptors overexpressed on cancer cells.

Applications in Targeted Bioimaging

Quantum dots (QDs) have revolutionized the field of biomedical imaging through their superior optical properties and customizable surface chemistry, making them ideal for a wide range of targeted bioimaging applications. Their high fluorescence intensity, photostability, and tunable emission spectra allow for precise, real-time visualization of cellular and molecular events [18]. When functionalized with targeting ligands, QDs enable selective imaging of specific biomarkers, tissues, or disease states, offering valuable insights in diagnostics, therapeutic monitoring, and basic biological research.

Cellular imaging

In vitro cellular imaging is one of the most common applications of QDs. Functionalized QDs can specifically bind to proteins, nucleic acids, or cellular receptors, enabling the visualization of intracellular or membrane-bound targets. For

instance, QDs conjugated with antibodies can selectively bind to cell surface markers such as HER2 in breast cancer cells, providing a fluorescent signal that allows for the identification and quantification of cancerous cells [19]. Their resistance to photobleaching allows for prolonged observation of cellular processes such as endocytosis, signal transduction, and protein trafficking.

In vivo imaging and tumor targeting

In vivo imaging using QDs has demonstrated significant potential, particularly in cancer diagnostics. Targeted QDs can accumulate in tumor tissues via the enhanced permeability and retention (EPR) effect or through active targeting using ligands specific to tumor-associated markers. Once localized, QDs emit strong fluorescent signals that can be detected non-invasively, enabling the monitoring of tumor growth, metastasis, and response to treatment. NIR-emitting QDs are especially advantageous in vivo due to deeper tissue penetration and reduced autofluorescence from biological tissues.

Multiplexed imaging

One of the most powerful capabilities of QDs is multiplexed imaging—simultaneous detection of multiple targets within a single sample. This is achieved by using QDs of different sizes, each emitting at a unique wavelength, and conjugating them to different targeting ligands. For example, in immunohistochemistry, multiple proteins can be labeled and visualized in a single tissue section, offering a comprehensive overview of complex cellular environments and disease mechanisms [20]. This multiplexing capability is particularly useful in cancer research, where the expression of multiple biomarkers can influence diagnosis and treatment decisions.

Real-time and long-term tracking

Due to their high photostability, QDs are well-suited for real-time and long-term imaging studies. Researchers use QDs to track single molecules or monitor dynamic biological processes over extended periods without significant loss of signal. In stem cell research, for example, QDs have been used to label and track transplanted cells to assess migration, differentiation, and integration into host tissues.

Diagnostic applications

Quantum dots are also being explored as diagnostic tools in biosensors and lab-on-a-chip platforms. Their brightness and specificity enable sensitive detection of biomolecules such as DNA, RNA, and proteins in complex biological samples. This has implications for early disease detection, especially in point-of-care diagnostics for infectious diseases and cancers [21]

Advantages and Limitations

Quantum dots (QDs) offer several compelling advantages over traditional fluorescent probes, making them powerful tools for targeted bioimaging and cellular diagnostics. However, their application also presents notable challenges that must be addressed before widespread clinical adoption.

Advantages

 Superior optical properties: QDs exhibit high fluorescence quantum yields, narrow and symmetric emission spectra,

- and broad absorption profiles. These characteristics enable excitation with a single light source and emission in multiple colors, ideal for multiplexed imaging.
- Photostability: Unlike conventional organic dyes, QDs resist photobleaching, allowing for prolonged imaging sessions and real-time tracking of biological processes.
- Size-tunable emission: By adjusting the size or composition of the QD, researchers can finely tune the emission wavelength, covering a wide spectral range from visible to near-infrared (NIR), which is beneficial for deep tissue imaging.
- Surface functionalization: QDs can be easily modified with targeting ligands (antibodies, peptides, aptamers), enabling highly specific binding to cellular targets for precise imaging.

Limitations

- Toxicity concerns: Many QDs are composed of heavy metals such as cadmium and selenium, raising potential cytotoxicity and environmental concerns. This limits their use in clinical applications unless safely encapsulated or replaced with non-toxic materials [22].
- Biodegradability and clearance: QDs often persist in biological systems due to their inorganic composition, posing challenges for in vivo clearance and increasing the risk of bioaccumulation.
- Complex synthesis and functionalization: Producing biocompatible and stable QDs with consistent properties requires complex synthesis protocols and careful surface engineering.
- Regulatory barriers: Due to safety concerns and lack of standardized protocols, regulatory approval for QD-based diagnostic tools remains limited.

Future Perspectives and Challenges

The future of quantum dots (QDs) in targeted bioimaging holds immense promise, driven by ongoing advancements in nanotechnology, materials science, and biomedical engineering. As researchers continue to innovate, several emerging strategies aim to overcome current limitations and enhance the clinical applicability of QDs in cellular diagnostics. One key area of focus is the development of non-toxic and biodegradable quantum dots. Traditional QDs often contain heavy metals such as cadmium, which pose significant health and environmental risks. To address this, scientists are exploring alternative materials such as carbon dots, graphene quantum dots, and silicon-based nanocrystals, which offer reduced toxicity while maintaining desirable optical properties. These next-generation QDs have the potential to make targeted imaging safer for in vivo applications [23].

Another promising direction involves improving the targeting efficiency and biocompatibility of QDs through advanced surface engineering. The integration of stimuli-responsive coatings, such as pH-sensitive or enzyme-cleavable polymers, allows for controlled activation and site-specific imaging. Moreover, coupling QDs with multifunctional nanocarriers can enable simultaneous imaging,

drug delivery, and therapeutic monitoring paving the way for theranostic platforms.

However, several challenges remain. The heterogeneity in QD synthesis can result in batch-to-batch variability, affecting reproducibility and reliability. Additionally, the long-term fate, degradation, and clearance pathways of QDs in living organisms are not yet fully understood, which complicates risk assessment and regulatory approval [24].

From a clinical perspective, standardization in QD formulation, functionalization, and imaging protocols is urgently needed. Collaborative efforts between researchers, clinicians, and regulatory agencies will be crucial for translating QD-based technologies from the lab to bedside. Furthermore, ethical considerations regarding the use of nanomaterials in human health must be addressed through transparent risk-benefit analyses.

Conclusion

Quantum dots (QDs) have emerged as powerful nanoscale tools in the field of targeted bioimaging, offering a transformative approach to cellular diagnostics. Their unique optical properties such as high brightness, photostability, and size-tunable emission enable precise and long-term visualization of cellular and molecular processes. These characteristics, combined with surface functionalization strategies, allow QDs to be tailored for specific biological targets, greatly enhancing the accuracy and sensitivity of imaging applications.

Through successful conjugation with targeting ligands like antibodies, peptides, and aptamers, QDs have shown exceptional promise in labeling and tracking specific cells, proteins, and disease markers. Applications range from live-cell imaging to real-time tumor detection and multiplexed analysis, providing a more comprehensive understanding of biological systems. Moreover, QDs have opened new avenues for integrating diagnostics with therapeutics, particularly in cancer research, where early detection and personalized monitoring are crucial.

Despite their numerous advantages, challenges such as potential toxicity, issues with biodegradability, and regulatory constraints continue to limit the clinical translation of QD-based technologies. However, advancements in the development of non-toxic and biocompatible QDs, along with innovations in synthesis and surface engineering, are paving the way toward safer and more effective biomedical applications.

In conclusion, QDs represent a significant leap forward in targeted bioimaging and cellular diagnostics. With ongoing interdisciplinary efforts to address existing limitations, QDs are poised to play a pivotal role in the future of precision medicine, offering enhanced diagnostic capabilities, improved patient outcomes, and deeper insights into complex biological systems.

Disclosure statement

No potential conflict of interest was reported by the author.

References

 Pandey S, Bodas D. High-quality quantum dots for multiplexed bioimaging: A critical review. Adv Colloid Interface Sci. 2020;278: 102137. https://doi.org/10.1016/j.cis.2020.102137

- Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, et al. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomed. 2017;5421-5431. https://doi.org/10.2147/IJN.S138624
- 3. Saraswat SK, Mustafa MA, Ghadir GK, Kaur M, Lozada DF, Al-Ani AM, et al. Carbon quantum dots: A comprehensive review of green Synthesis, characterization and investigation their applications in bioimaging. Inorg Chem Commun. 2024:112279. https://doi.org/10.1016/j.inoche.2024.112279
- Mohamed WA, Abd El-Gawad H, Mekkey S, Galal H, Handal H, Mousa H, et al. Quantum dots synthetization and future prospect applications. Nanotechnol Rev. 2021;10(1):1926-1940. https://doi.org/10.1515/ntrev-2021-0118
- Gil HM, Price TW, Chelani K, Bouillard JS, Calaminus SD, Stasiuk GJ. NIR-quantum dots in biomedical imaging and their future. Iscience. 2021;24(3). https://doi.org/10.1016/j.isci.2021.102189
- Saeboe AM, Nikiforov AY, Toufanian R, Kays JC, Chern M, Casas JP, et al. Extending the near-infrared emission range of indium phosphide quantum dots for multiplexed in vivo imaging. Nano Lett. 2021;21(7):3271-3279. https://doi.org/10.1101/2021.02.03.429632
- Montalti M, Cantelli A, Battistelli G. Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem Soc Rev. 2015;44(14):4853-4921. https://doi.org/10.1039/c4cs00486h
- 8. Kumar BG, Sadeghi S, Melikov R, Aria MM, Jalali HB, Ow-Yang CW, Nizamoglu S. Structural control of InP/ZnS core/shell quantum dots enables high-quality white LEDs. Nanotechnology. 2018 Jun 18;29(34):345605. https://doi.org/10.1088/1361-6528/aac8c9
- Pu Y, Cai F, Wang D, Wang JX, Chen JF. Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review. Industrial & Engineering Chemistry Research. 2018; 57(6):1790-1802. https://doi.org/10.1021/ACS.IECR.7B04836
- Ndlwana L, Raleie N, Dimpe KM, Ogutu HF, Oseghe EO, Motsa MM, et al. Sustainable hydrothermal and solvothermal synthesis of advanced carbon materials in multidimensional applications: A review. Materials. 2021;14(17):5094. https://doi.org/10.3390/ma14175094
- Schwenke AM, Hoeppener S, Schubert US. Synthesis and modification of carbon nanomaterials utilizing microwave heating. Adv Mater. 2015;27(28):4113-4141. https://doi.org/10.1002/adma.201500472
- Karakoti AS, Shukla R, Shanker R, Singh S. Surface functionalization of quantum dots for biological applications. Adv Colloid Interface Sci. 2015;215:28-45. https://doi.org/10.1016/j.cis.2014.11.004
- 13. Yao J, Li P, Li L, Yang M. Biochemistry and biomedicine of quantum dots: from biodetection to bioimaging, drug discovery, diagnostics, and therapy. Acta Biomater. 2018;74:36-55. https://doi.org/10.1016/j.actbio.2018.05.004
- Bilan R, Fleury F, Nabiev I, Sukhanova A. Quantum dot surface chemistry and functionalization for cell targeting and imaging. Bioconjug Chem. 2015;26(4):609-624. https://doi.org/10.1021/acs.bioconjchem.5b00069
- 15. La Rosa M, Avellini T, Lincheneau C, Silvi S, Wright IA, Constable EC, et al. An efficient method for the surface functionalization of luminescent quantum dots with lipoic acid based ligands. Eur J Inorg Chem. 2017;2017(44):5143-5151. https://doi.org/10.1002/EJIC.201700781
- 16. Pham XH, Park SM, Ham KM, Kyeong S, Son BS, Kim J, et al. Synthesis and application of silica-coated quantum dots in biomedicine. Int J Mol Sci. 2021;22(18):10116. https://doi.org/10.3390/ijms221810116
- 17. Yang W, Ella-Menye JR, Bai T, Sinclair A, Jiang S. Stable and functionalizable quantum dots with a thin zwitterionic carboxybetaine layer. Langmuir. 2017;33(35):8784-8789. https://doi.org/10.1021/acs.langmuir.7b00981
- 18. Huang S, Huang G. The utilization of quantum dot labeling as a burgeoning technique in the field of biological imaging. RSC Adv. 2024;14(29):20884-20897. https://doi.org/10.1039/d4ra04402a
- 19. Pedroso CC, Mann VR, Zuberbühler K, Bohn MF, Yu J, Altoe V, et al. Immunotargeting of nanocrystals by SpyCatcher conjugation of

- engineered antibodies. ACS Nano. 2021;15(11):18374-18384. https://doi.org/10.33774/chemrxiv-2021-9q5xr
- 20. Lee-Montiel FT, Li P, Imoukhuede PI. Quantum dot multiplexing for the profiling of cellular receptors. Nanoscale. 2015;7(44): 18504-18514. https://doi.org/10.1039/c5nr01455g
- Soldado A, Barrio LC, Díaz-Gonzalez M, de la Escosura-Muñiz A, Costa-Fernandez JM. Advances in quantum dots as diagnostic tools. Adv Clin Chem. 2022;107:1-40. https://doi.org/10.1016/bs.acc.2021.07.001
- 22. Das A, Snee PT. Synthetic developments of nontoxic quantum dots. ChemPhysChem. 2016;17(5):598-617.
- https://doi.org/10.1002/cphc.201500837
- 23. Zhu C, Chen Z, Gao S, Goh BL, Samsudin IB, Lwe KW, et al. Recent advances in non-toxic quantum dots and their biomedical applications. Progress in Natural Science: Mater Int. 2019;29(6):628-640.
- 24. Mülhopt S, Diabaté S, Dilger M, Adelhelm C, Anderlohr C, Bergfeldt T, et al. Characterization of nanoparticle batch-to-batch variability. Nanomater. 2018;8(5):311. https://doi.org/10.3390/nano8050311